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.An analytical evaluation of turbulence-induced flexural noise
in planar arrays of extended sensors

Robert E. Montgomery

Naval Research Laboratory, Underwater Sound Reference Detachmen:, P.O. Box 568337, Orlando.
Florida 32856-8337

Bertrand Dubus
Institut Superieur d’Electronique du Nord, 41 Boulevard Vauban, 59046 Lille Cedex, France

(Received 15 October 1992; revised 1 March 1993; accepted 15 May 1993)

Large-area, hull-mounted conformal sonar arrays typically employ extended sensors that are
configured to detect acoustic signals by means of thickness strains that are induced by the
incident pressure field. In most cases, extended sensors also have an appreciable sensitivity to
strains in the lateral dimensions. Thus flexure 6 such a sensor would induce a signal that would
not be differentiated from that of a target. Hull-mounted conformal arrays are evolving toward
using lightweight, flexible sensors and support structures; therefore, flexure-induced noise is an
ever present concern This paper presents an analytical approach and a general mathematical
model for the noise arising from flexure of the array support plate coupled into the array via the
lateral sensitivity of the sensor. The excitation that drives the flexure is assumed to be the
turbulent boundary layer created by motion of the platform through the external fluid medium.
An analytical expression is derived for the equivalent plane-wave spectral density for this noise
source. The result is expressed in terms of the frequency response function of the plate, the
wave-number-frequency spectral density of the excitation, and the spatial filtering characteristics
of the array. An application is discussed to show that predictions can be obtained in closed form.

WA
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PACS numbers: 43.20.Tb, 43.30.Lz, 43.40.Qi, 43.88.Hz

INTRODUCTION

Large-area conformal arrays that can be mounted to
the hull of a ship offer unique tactical advantages over
towed arrays. The performance of such arrays is usually
limited by self-noise and platform noise. In the latter cat-
egory, the noise induced by the turbulent boundary layer,
located near the hull, is a major concern.

Boundary layer turbulence produces a random pres-
sure field that will be detected by the array as a noise
source. This is the so-called direct path for flow noise. This
path for flow noise exists more or less independently of
how the sensors are supported and whether or not they are
point sensors versus extended sensors. Flow noise degrades
the signal-to-noise ratio but can be reduced by using outer
decoupler blankets that serve to attenuate the turbulent
boundary layer (TBL) pressure field. The use of extended
sensors to provide spatial filtering of the flow noise is also
an attractive way to diminish flow noise.

Secondary sources for flow-induced noise can also be
significant. If the structural support plate (SSP) is rela-
tively lightweight and compliant, then the TBL can induce
flexure of the SSP, which then serves as a secondary source
of noise. This noise can enter the array via direct flexure of
the extended sensors or as acoustic noise radiated by the
SSP. The radiated component has been addressed by other
investigators."s The former source, flexure induced into
the sensors, is the focus of this paper.

The problem will be modeled as follows: the SSP, sen-
sor array, and outer decoupler (OD) are considered to
constitute a curved, layered shell with water on the OD
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side and a vacuum on the SSP side. A vacuum backing was
chosen because it is simple to model and, in addition, 1t
represents a worst-case scenario; i.e., the case in which the
SSP is backed by a pressure-release baffic. The Corcos’
model will be used for the TBL pressure spectrum al-
though the theoretical development is quite applicable for
any model of the wall pressure spectral density. This base-
line model is illustrated in Fig. 1. The formalism to be
developed makes no presumptions about the boundary
conditions on the plate. Later we shall assume that the
edges are simply supported in order to illustrate a specific
application. Numerous analytical studies of shell and plate
motion indicate that simple supports, for a large shell or
plate, usually give results that accurately reflect the actual
response of a plate supported in more complicated ways.
The fluid loading on the plate will be included by using a
rather simple model developed by Junger and Feit."" The
validity of this model will be established by comparing the
in-water displacements so derived with the more exact pre-
dictions of Sandman’s model."'

I. ARRAY RESPONSE TO PLATE FLEXURE

Typically, the extended sensor array is situated on or
very near the SSP as shown in Fig. 2. The sensors will be
strained laterally if the plate flexes in response to an exter-
nal excitation; therefore, noise will be generated if the sen-
sor possesses lateral sensitivity. The TBL excitation will
also be detected by the array, even if the plate is rigid; this
is the so-called direct path for flow noise as discussed ear-
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TURBULENT FLOW

FIG. 1. Configuration of baseline problem.

lier. In order to analyze only the flexural contribution, it
will be assumed that the sensors do not respond to the
direct component.

The flexural response of a piezoelectric plate has heen
modeled by Ricketts.'~ The relevant constitutive equations
are

T\=CiS1+CHS,—hy Dy, (la)

T,=CBS,+CBS,— hy, Dy, (1b)

Ey=—hyS\—h3:S,+ B3 D, (1c)
and

T3;=T4=Ts=0, (1d)

where T, S, E, and D represent stress, strain, electric field
intensity, and electric displacement, respectively. The ma-
trix components Cjj, 2 B, and h;; j are the elastic, dielectric,
and piezoelectric material constants.'* The superscripts in-
dicate that the designated parameters are held constant.

Support plate

NOISE CANCELLATION

Support plate

NO NOISE CANCELLATION

FIG. 2. Mechanism by which flexural noise can be induced via the lateral
response of the sensors.
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According to thin-plate theory, the strains §) and S,
are related to w, the displacement of the plate, as follows:

Fw Fw
Slz—dé;’_r and Sz=~—da—yj, (2)

where d is the distance from the sensor midplane to the
neutral plane. Here, S, and §, are assumed to be constant
through the thickness of the sensor, and D; is also constant
through the thickness, as can be shown by applying Gauss’
law to a dielectric. Consequenily, £ is constant through
the thickness and we can write

E;-—-V/a, (3)

where V is the voltage between the electrodes and g is the
thickness of the sensor.

Assume that the hydrophones are electrically con-
nected in parallel, which is equivalent to steering the array
to broadside. Typically, piezoelectric sensors operate in an
open circuit mode; hence, the total charge Qr appearing on
the electrodes is zero. Therefore, since D; corresponds *n
the charge density, we can write

N , ,
0;r=0= 2 |* |” Dydxady, (4)
i=1 Jx; Jy

where the integrals are performed over the lateral dimen-
sions of each sensor. Here, N denotes the total number of
sensors in the array. Using Eq. (1c), we obtain

f ( +h31$l+h3252)dxdy (5
l=l

The first term is independent of x and y; therefore,

NI
f fy‘ —dx dy= yV (6)
i=1

where /, and /, are the lateral dimensions of an individual

sensor. Combining Eq. (5) with Eq. (6) we can write

a
V=N_lxly J-f (h}lsl +h32S2)A (x,y)dx dy, (7)

where A(x,y) is an array sensitivity function defined in
such a way as to turn the summation into a continuous
integration. For an unshaded array of unshaded hydro-
phones we can write

1, if (x,y) is on a sensor,
A(xy)= 0, if (x,y) is not on a sensor.

(8)

Equation (7) gives the flexural noise response (in
volts) in terms of the strain components S, and §,. If the
external excitation function is deterministic, then there will
exist uniquc, well-defined strains that can be computed
with thin plate or shell theories. On the other hand, if the
excitation is a random pressure field (such as TBL), then
the displacement and strains must be thought of as sto-
chastic variables, which can be represented by a probability
distribution function. In such cases, the voltage induced
into the array will also be a distributed variable. Therefore,
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in order to properly assess the noise due to flexure, one
" must account for the statistical nature of the excitation,
which in our case is the turbulent boundary layer.

Before proceeding with the development of a stochas-
tic model, it is convenient to express the noise sensed by
the array in terms of an equivalent-plane-wave pressure
field. This will allow direct comparison of flexura! noise
with ~mbient c=a noise and other noise specifications. In a
free-field environment the sensors operate in a hydrostatic
mode. An incoming plane wave of amplitude P will pro-
duce an electric field £, across the electrodes of a nonflex-
ing sensor of magnitude

Ey=(g3:+831+832)P (9)

where g;; is the transverse piezoelectric constant, and g,
and g3, are the lateral piezoelectric constants for a piezo-
electric slab that is poled through its thickness. Since Ej is
constant through the thickness, the voltage across the elec-
trodes is ¥'=E,a. Therefore,

V=_(ag,)P, (10)

where g,=g33+g3, +83, is known as the hydrostatic g con-
stant. Equation (10) allows Eq. (7) to be expressed in
terms of an equivalent-plane-wave pressure field impinging
on an array in the free field.

Il. POWER SPECTRAL DENSITY FOR FLEXURAL
NOISE

The spectral density ®,,(w) for direct flow noise is
typically computed by the following relationship:

Pyp(0) =Jf d*k A(kk,,0) H(ko) T (ko) P(ko),
(1)

where A(kk,w) is the array function steered to k.,
H(k,0) is the hydrophone function, 7 (k,w) is the transfer
function, and P(k,w) is the wall pressure spectrum. The
essential features of the derivation of this relationship are
established in references.'*!" Equation (11) expresses the
direct TBL noise level at the sensor, but it does not account
for flexurally induced noise that couples to the lateral sen-
sitivity. Therefore Eq. (11) is not appropriate for the prob-
lem under consideration. Starting with the first principles
that govern random vibration theory, an analogous expres-
sion for flexural noise can be derived. The result will be
formally similar to Eq. (11), but the interpretation of the
component functions will be quite different.

1. DERIVATION OF THE POWER SPECTRAL
DENSITY FOR FLEXURAL NOISE

The following derivation of the power spectral density
employs the notation and terminology found in Probabilis-
tic Theory of Structural Dynamics by Lin.'*

By combining Egs. (7) and (10) we can express the
equivalent pressure as

1690 J. Acoust. Soc. Am., Vol. 94, No. 3, Pt. 1, Sept. 1993

1
P(r):N_gh[_xlyff (/l;lsl+h;2S1)‘1(X.}')dXdy (l‘.))

As indicated previously, the excitation field is random;
therefore, the array output voltage, and hence the
equivalent-plane-wave pressure, must be cousidered as ran-
dom variables. The transverse displacement w and the lat-
eral strains S, and S, are also random variables. The power
spectral density for the equivalent-plane-wave pressure can
he found by taking the Fourier transform of the corre-
sponding correlation function R,,(1,1") that is defined as

Ry (1,ty=E[P()P(2')], (13)
where E[ ] indicates the expected value. Because P depends
linearly on §, and S,, we obtain from Eq. (12)

o© €

1y :
Ry(01) = (Nghlx‘[y) JI der f &' (W) Rs,s (rLr',0")

~+ 2h3\h32R5132(l’,[,I",l’)

+h,Rs 5 (L) JA(DA(T), (14)
where Rg s , Rs s, and Rss, are the cross correlations on
strains. For example,

R s,(r,6",0") =E[8,(r,1)S,(r'",t") ]. (15)

Let A(r,r’,t,’) denote the impulse response function of
the plate, which is defined as the displacement of the plate
at r,t due to an impulsive load given by

Pi(rt)y=6(xr—r")o(t—1"), (16)
that is applied at r’,t’. The principle of causality requires
that A(r,r’',t,t") be zero when £ <t’. A general excitation
can be represented by a superposition of impulses; likewise,
the displacement can be represented as a superposition of

impulse responses when the system is linear. In addition, A
will depend only on the difference ¢—¢'. Thus we can write

wirt) = J’ drf J- dr' hirr' i —7)P(r,7), (1)
0 R

where P is the applied pressure and R is the region occu-
pied by the plate.
The in-plane strains are, therefore,

w

S](r,t)Z—d‘é—x'f

t
=—d d?‘ff d*r' h (v’ t—7)P(r'.1)
0
R

(18)

and
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Fuw

Sz(l‘,l): —dg};!‘
I
= —df drf d'r hy(rr' t—1)P(r',7),
0
R

(19)

where h,,=3h/3x* and h,,=3"h/dy".
Using Eqs. (18) and (19), the correlation functions
for strains can be written as'®

Rslsl(r,t,r',t')

! ’
=g f dr f[ dT'J.f dzsff d*s’ h (rs,t—T)
0 0
R R

Xho (r',8",' — 1" )R pp(8,7;8",7"), (20)

where R, is the correlation on pressure. Similar expres-
sions are found for Rs s, and Rg 5 . The cross spectral
densities are obtained from the Fourier transforms of the
correlation functions. For example, the cross spectral den-
sity for S, is given by

1 2 e @
¢s,sl(r,w,r’,w')=(ﬁ) J- J. Rslsl(r,t;r',t’)

X exp~ (="t dy’. 21

Assuming the excitation to be weakly stationary, the cor-
relation function for the wall pressure will depend only on
the temporal separation z—t'. In this case, it can be
shown!® that the correlation functions for the responses
also depend only on the temporal separation. Subse-
quently, the cross spectral densities depend only on a single
frequency parameter. Thus for stationary excitations, Eqs.
(20) and (21) may be combined to yield

&5 s, (11 ,0) =d’ f fR d’s f o d’s’ @, (s,s",0)

X Ho(r,s,0)HY, ,(r',s"0). (22)
Similarly,
s 5, (rr',0) =d? f J; dzsf J;e' d’s’ ,,(s,8"0)

X Hoe(r,8,0) Hy, (1 8,0), (23)

where the frequency influence function H(r,s,0) is defined
as

H(rsw) = f ® h(rs,e ' di, (24)

-
and ®,, is the Fourier transform of R,, with respect to
time. The subscripts on H denote partial derivatives with
respect tor or r’.

For spatially homogeneous excitations, ®,, will de-
pend only on the spatial separation. In this case, we can
replace the integrands of Eqs. (22) and (23) by their spa-
tial Fourier transforms to obtain

1691 J. Acoust. Soc. Am., Vol. 94, No. 3, Pt. 1, Sept. 1993

¢5151 (r,r'\w) =d2ff \llpp(k,a)) G . (rko)

X G* ,(r' kw)dk, (25)

where

i .
‘l’pp(k,w)=(-z—r;) ff ¢pp(S—s',a))e"4k-(sfs )d(S—s’)

and

G (rkow)= f f H, (rsw)e* s ds. (26)
R

Similar expressions are obtained for P55, and Ps 5, . The
function G(r,k,w) is called the sensitivity function. (As
before, subscripts on G and H denote partial derivatives. )
This function represents the structural response at point r
when the excitation is harmonic, having wave number k
and frequency w.

For linear structures, Lin,18 Strawderman,’ and others
have shown that the sensitivity function may be written as
a superposition of normal modes. Using the method of Lin
we obtain

& P fml(r)
Gxx(r,k,&))= mz_l axz Sm(k)Hm(a))v for rER,
0, for reR,

(27)

where f,,(r) is the normai mode m for the plate in vacuo,
and

s,,,(k)=j fk £ (r)e® T d2r. (28)

The factor H,(w) is called the frequency response func-
tion of mode m and is defined as the modal displacement of
the panel when the excitation is a unit harmonic pressure
having wave numbers corresponding to mode m. The func-
tion .S is commonly referred to as the modal shape func-
tion.

From Egs. {(25) and (27) we obtain

2 Pfa(r) FPLHE)
q)slsl(l',l",ﬁ))'—‘dz Z axf ax;z

m.n

H(w)H,(0)

C Y

XHd>,,,,(k,w)sm(k>s:(k)d2k. (29)

Similarly,

5 Ffa(r) B Lr(r)
’ _ 2 m n
(DS‘SZ(r,r 9‘0)"‘d Z axi aylz

m,n

HY(w)H,(w)

xffd>pp(k,w)S,,,(k)S:(k)d2k. (30)

Equation (29) also gives @55, by replacing d/dx with
d/9dy.
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Equations (29) and (30) give the cross spectral den-
“sities for strains in terms of the modal response of the
structure and the wave-number frequency spectrum of the
excitation. The power spectral density for flexural noise
can now be found by combining the Fourier transform of
Eq. (14) with Egs. (29) and (30). Again invoking tem-
poral stationarity, the time Fourier transform of Eq. (14)
yields

d : - 2 - 2 2
&) =(gagz) [ o) | #rihiosstoro

+2h31h3Ps 5, (r,r',0)
+h s, (10,0) JA(D) A(r). 31)

Combining Egs. (29)-(31) we obtain

d 2
P, (0)= (m) 2 H,(0)H (o)

m,n

xff ¥, (k,w)S,(k)S,(k)d*

32 2
J-fdz ffdz ,(hgl fm(l')a.gn(l'

L P f(r)
—f#—f#—)mmr ). (32)

If we define
d>pm(w) sz v r,(k,w)S,,,(k)de, (33)
and
N T CONN LT
A ALY ) = 32—3—2‘5_7 31 326—7_3—2—
Ffmfu 5 P fmd Sy
+h31h3, ol 3y 3+ hs, W

(34)
then Eq. (32) can be written as

mn

X fJ. dzrf d*r' Ay (r,r")A(R)A(T').

(35)

Equation (35) is the central result of this paper. It
provides the formal connection between the wave number-
frequency spectral density of the excitation field and the
power spectral density for the equivalent-plane-wave pres-
sure sensed by the array. This relationship is the analog of
Eq. (11), the formula that is used for direct path flow

d 2
q>,,,,(w)=( Ng;,lxly) Y Ho (@) HE ()P, ()

1692 J. Acoust. Soc. Am., Vol. 94, No. 3, Pt. 1, Sept. 1993

noise. The term ¢pmn in Eq. (35) is the analog of the term

P(k,w) in Eq. (11). It accounts for the spectrum of the
excitation field through the relationship given by Eq. (33),
where ¥, is identical to P(k,w). The last term in Eq. (35)
is the analog of the product of the array and hydrophone
functions in Eq. (11). This term depends on the size and
location of the sensors in the array. The terms H,,(w) and
H¥(w), called frequency response functions (FRF), are
not found in Eq. (11). These terms account for the re-
spoase of the plate to each modal component of pressure in
the spectrum of the exciration field. The FRF depends
upon the material properties of the plate as well as the
effects of water loading and intermodal coupling.

The double sum over modes in Eq. (35) can be
thought of as representing a type of intermodal coupling.
Thus one could have two types of intermodal coupling: (1)
via the water loading on the plate, and (2) via the off-
diagonal terms in Eq. (35). These off-diagonal terms arise
from cross correlations of normal mode strains.

IV. THE MODAL FREQUENCY RESPONSE FUNCTION

The modal frequency response function H,,(w) can be
found by solving for the steady-state motion of the system
when a unit-amplitude, harmonic force is applied in mode
m. For a rectangular isotropic thin plate, simply supported
and fluid loaded on one side, Lin'® derives the following
frequency response function:

Hn(0)=77 (D(kfnx+kf,,y)2——y(oz
xbey
ip?  \7! ()
— , =\m,m,),
) e
x ¥

(36)

where L, and L, are the plate dimensions, u is the mass
per unit area of the plate, D is the plate fiexural rigidity, &,
is the acoustic wave number, and p/ is the density of the
fluid. The modal wave numbers are given by

kmxzmxﬂ/Lx, m,=0,1,2,...
and (37
kp=ma/L,, m,=012,..

Equation (36) provides a good model for the fre-
quency response function if the mass and stiffness of the
isotropic support plate are much greater than those of the
sensors and the outer decoupler and, in addition, the fluid
loading is adequately represented by the last term in this
equation. When the support plate is orthotropic, and/or
comparable in mass and stiffness to the other components,
then the entire structure must be thought of as a composite
layered plate or shell as shown in Fig. 3. In such cases, the
frequency response function may be obtained using the
Donnel shell theory as generalized by Dong'® to include
layered shells. If the radius of curvature of the shell is
much greater than the other dimensions of the shell, then

R. E. Montgomery and B. Dubus: Turbulence-induced flexural noise 1692
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FIG. 3. Cutaway view of the array considered as a multilayered
cylindrical plate.

the Donnel theory reduces to the following equations for
the motion.?’

Assuming that the plate is simply supported, the dis-
placement can be expressed as a summation of in vacuo
modes; i.e.,

o

w= 2 2 w,,,x,,,ysin(k,,,xx)sin(k,,,yy).

m=1 my=1

(38)
Any externally applied pressure can be similarly written as

= 3 X G, SN (K X)si0 (K ). (39)

mx=l my=1

The generalized applied force in mode m is defined as

LJ’ LX . .
memyz fo J; qfsm(k,,,xx)sm(k,,,}y)dxdy. (40)

Using orthogonality of the in vacuo modes, one finds that

poknk,(—1)m+n

Frm =(L L/ G0 m . 1),

The acoustic pressure created by the vibration of the plate
can be expressed in like fashion:

P= 2 X Py sin(k,x)sin(k,p).

me=1 m,=1

(42)

)=

For a shallow layered shell it has been shown™ that
the Donnel theory yields the following equation of motion:

[ Dy, 4K )+ 2( Dy +2Dog) Ky Ky — 0" i,

= (4/L_‘L}')Frnxmy—me‘mr’ (43)

where D, Dy,, and Dy represent the flexural rigidity
constants for a layered plate. These are defined"” in terms
of Young’s modulus and Poisson’s ratio. For a single layer
of isotropic material, these equations reduce to the classical
equation of motion for a thin rectangular plate.

V. WATER-LOADING EFFECT

This problem has been studied by many authors. 2>
Most of the available models have been summarized by
Leibowitz.’ The major complication arising from water
loading is that the orthogonal in vacuo eigenmodes become
intercoupled by the water loading. That is, the interaction
of the fluid and plate for one mode is a function of all the
other modes.

We shall adopt the Junger and Feit model as described
by Leibowitz;?’ this model was developed for symmetric
modes of the plate. However, the analytical result is valid
for both symmetric and antisymmetric modes
(Leibowitz,”” Table I).

The Junger and Feit model for the water loading on
mode (m,n) can be expressed as

26

Inpg= )

14)

= (Pmnpg— @M pppg) L Ly,

where
Prnpg=Re( pnpe/ LL,), (46)
Mpinpg=— (1/0)IM (L e/ L L,). (47

By examining Eq. (44) we see that each mode (m,n) is

coupled to all of the other modes via the term /1,,,,,,.
Leibowitz?’ has shown that the cross-coupling terms

are much smaller than the self-impedance components
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Pmn=iwzlmnpqu)pqy (44)
P4
where
]
cos® y, L, cos? y,L, dv, dy,
Vo) I, — V) (ke — ) o=V (K= 7))
(43)

T

when k,L, and k,L,>3, which are equivalent to k,, L,
and k,,,yLy > 1 (the thin plate criteria) provided that w<o, .
Here k, is the acoustic wave number w/c. This criteria is
satisfied for the SSP over the frequency band of interest.
Moreover, Sandman'' has shown that when moderate
structural damping is included, the cross-coupling terms
are negligible. For reassurance cross-coupling terms were
computed numerically and were found to be negligible for
the problem of interest to be discussed below.
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'I:ABLE 1. Water loading: Companson of approximate and exact
methods.

Frequency =38 kHz

Approximate Exact'!

y j— {Ns/m) (Ns/m)

I 1.368 % 107 (1357 % 107 = j1.666 x 10%)
Lowwown 7.687x 107 (5.208 x 107 - j2.671 x 107)
iy j5.222 %107 (2.160 x 10 + j4.963 < 107)
Lowyw i1.253 %10 (3.281x 107+ j1.162 % 107)

Vi. APPROXIMATE WATER LOADING

When cross terms are negligible the Junger and Feit
model'? for the acoustic pressure can be written as

: 2
ipw wmxmy

P ~ : ’
Iy ;}ka—km —km
X v

where p , is the density of water and &, is the acoustic wave
number.

As a check on the Junger and Feit approximation,
some typical modes were computed and the results com-
pared to the more exact results of Sandman.!' The specific
example considered consisted of a 0.0254-m-thick cylindri-
cal steel shell overlaid with a 0.0508-m-thick elastomer
blanket. The lateral dimensions of the shell were L,=4 m
and L,=2 m. The radius of curvature of the shell was 5.2
m. The frequency range of interest was 1 to 10 kHz. The
values used for Young’s modulus, Poisson ratio, and den-
sity are as follows:

(48)

Elastomer layer

E=10x10° Pa v=049 p=1200 kg/m?
Steel support

E=21x10" Pa v=03 p=7900 ky/fus .

The area density p can be found by taking the product of
p and A. The resulting impedance values are shown in
Table I for 8 kHz. The differences between the approxi-
mate vaiues and the exact values are found to lead to errors
of no more than 1 dB in the final result.

The modal displacement as computed with the radia-
tion impedance from Sandman’s'' numerical technique
was compared to a similar result using Junger and Feit’s'”
approximate formula, Eq. (48). Figures 4 and 5 compare
the results of these two methods for two representative
sections through the plate, one parallel to the x axis, the
other parallel to the y axis. The two methods give essen-
tially the same results; i.e., the differences are less than the
resolution of the plots. These results support the use of the
simpler Junger and Feit expression for the purposes of
modeling the TBL excitation of the SSP. The additional
developments that follow will assume the Junger and Feit
model is being employed; however, these developments
could be generalized in a straightforward way to include
Sandman’s model for the water loading. Modal coupling,
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FIG. 4. A comparison of the plate displacement along the 1 axis obtained
using the Junger and Feit"' approuimation with the displacement ob-
tained using Sandman’s “method™ for obtaining water loading

should it be important, could also be accommodated, but
the numerical computations would become much more dif-
ficult.

Recall from the structure of Eq. (35) that the double
summation over modes introduces an additional type of
modal coupling that arises from cross correlations between
modes. Thus one could have two types of modal coupling:
(1) via the water loading on the plate, and (2) via the
double summation in Eq. (35). We have argued above that
the first kind of modal coupling is negligible for our prob-
lem. We shall see that the second kind is also neghgible.

Having established the credibility of the Junger and
Feit model for water loading, we are now mn a position to
compute the frequency response function. Sstting F mm,
= 1, and using Eq. (48) for the water loading, we find from
Eq. {(43)

T T ] T IT_! ‘—r_\‘ﬂ'"—r‘—:‘—‘l'vT"r

6.2 +—

i

0.0

DISPLACEMENT (ARBITRARY UNITS)

Y COORDINATE OF PLATE (M)
FIG. 5. A comparison of the plate displacement along the y axis obtained

using the Junger and Feit™ approximation with the displacement ob-
tained using Sandman’s “method™ for the water loading.

“Ra4




H,(w)= ( Dy (K}, +Kp ) +2(Dyy+ 2Dy )ky, Ky

: 2 -t
2 lpjw

)" — —p—— . m
Hw ‘/k;—-k;, = ";sn ) L‘Ly (

Vii. THE ARRAY FILTER FUNCTION

The in vacuo eigenfunctions for a plate of dimension
L, and L, are

f,,.(r)=sin(k,,,jx)sin(k,,,)y), (50)

where m represents a pair of modal indices (m,,m,) that
take on integral values from 1 to . From Eq. (34) we
have

Ama(r0) = [15,K3, Koy + sy (K Ky 4K Ky )
+ Bk, K3 1S m(E) f(E")
= (knk,znx“’hszkfny) (hSIki! +hszkiy)
X fm(£) folr). (51)

Integration over a single sensor located in region
Rie (x;,p;;x] .y} yields

JJ dzrff dr' a,,,
R, R,

= (s Ky +hyaken ) Uik, +hoks )

cos k,, x{ —cos k,, x;\ {cos k,,,yv{ —cos k,,,'y,
X X )

X v

cos k,,xx,f —cos k,,‘x,- cos k, vV', cos k, y;

X ¥

(52)

The total array filter function is obtained by summing
over all regions R; occupied by the sensors.

VIil. THE MODAL SPECTRAL DENSITY OF THE
EXCITATION

Before evaluating ¢, (w) it will first be necessary to

evaluate the form factors S,,(k), which are Fourier trans-
forms of the mode shapes; i.e.,

Sm(k)sze"“"sin(k,,,xx)sin(k,,,}y)dx dy, (53)
A

3
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(a)

FIG. 6. Contours in the complex plane used to evaluate the modal spec-
tral density of the turbulent boundary layer pressure field. Contour (a) 1s
used for the diagonal terms whereas contour (b) is appropniate for the
off-diagonal tern...

where 4, denotes integration over the surface of the com-
posite SSP. This integration can easily be done by parts,
yielding

km!{l —exp[ _'i(kax—m,\'TT) ]}

(k)= .

k,,,v{l —exp( —i(k,L,—m,7)]}
' A ‘
m), v

X (54)

The power spectral density of the excitation ®,,(k,w)
will be taken as the wave-number-frequency spectrum re-
sulting from the Fourier transform of the wall pressure
spectral model proposed by Corcos.’ Following Ko and
Schloemer,'” this model can be expressed as

P(0,0) (a,a,k?)
(P (k= k) 2+ (a1k ) 1A+ (ark )]}

dp(kw) =
(55)

where k. =w/U_ and U, is the convection velocity.
Then P(O,0)=a_ (1 + y)psz;/w, where p, is the

water density and V,_ is the friction velocity. The terms
a,, vy a,, and a, are empirically determined constants.
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" We shall first evaluate the diagonal terms of
" @, (0)(m = n). In this case we can. .ombine Egs. (33).
(54), and (55) to obtain

-,k [V—costh, L, m, m)|dk
@.W (w)=2 J :

AL AT (kY]

m

(58}
P, (w)=¢, (), (w)B(k), (56)
where and
( )_2J“ k:nl[l——cos(k‘l m.m) ldk, ﬁ(k()EP((),m)(zlazkf/rr{ (59)
o (=2 )RR TR TR (k)]
(57 Consider Eq. (57). This integral can be wrnitten as
_
. k,l” [l—e”/"“‘ ’"‘”’]dZ
= : : , o0
¢, (@) Re(zf . Z=k )V (Z5 kg IZ= kT4l [ Z k(1 fia,)]) (e
f
where the variable of the integration has been replaced by  and
the complex number Z. This integral may be evaluated b =k k
using the contour shown in Fig. 6(a). The numerator has P, =
been replaced by the real part of an exponential in order to c e MR A et gk
avoid a pole where the C_ contour intersects the imaginary « f _ o ‘,T,“_.ﬁ_w 2
axis. There are simple poles at - &, and + k, , and a w (KRR VK= &G ) AT+ (axk )7
second-order pole at Z=k_(1 +ia,). Using the theorem of (65)

residues we find the following results:

., (w):Re(kaf,,‘

mL, 1
3 ((k,,,'+kc)2+(a,kr)7

1 —expi[k L,(1+ia;) —m,mr]
axkc[kf( ] +ia¢)2—En.12 )

1
+(kmx—kc>?+(a,kt?)' (eh)

The expression for d’Pm (w) can be evaluated in a similar

fashion, the only difference being that the second-order

pole will be located on the imaginary axis. The result is

1 —exp(—a,k L,)cos m,m
ark(arki+k;, )

8p,, (@) =27k,

L, 62
+[kmy+ (a2kc)2} . ()

An analogous expression for the off-diagonal terms
(ms=£n) is
¢, (0)=8, (w)d, ()B(K,), (63)

where

= [1__e—i(kax«m,‘rr)”l__el(k,l,‘—n,rr)]dkx
x L (IR Y (K=K ) [ (k= k) T+ (ak )]
(64)
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These are similar to the previous expressions except
that there are now four simple poles on the real axis {see
Fig. 6(b)] and the off-axis poles are now simple poles. The
evaluation is straightforward if one writes the numerator as
1 + elim‘ naw o el(k\/“ nE e wk ol "I The first
three terms may be integrated using the upper contour in
Fig. 6(b), whereas the fourth term may be integrated using
the lower contour. The results will not be presented be-
cause they are at least two orders of magnitude smaller
than the diagona) terms for the illustrative application dis-
cussed below. This is to be expected. for upon examination
of Eq. (33) it is seen that when ¥, (k,w) is a slowly vary-
ing function in comparison to S,, and S, . then the contri-
butions from the orthogonal form factors §,, and $* tend
to cancel upon integration. Thus the cross terms are neg-
ligible except when I., and L, are so small that §,, and S,
vary as slowly as pr(k.w). Even if this were not the case,
the off-diagonal terms in the array filter function are small
for the problem of interest. A numerical study of the off-
diagonal terms indicates that they are typically eight orders
of magnitude smaller than the diagonal terms. The largest
contributions from off the diagonal are terms for which
three of the indices m,, m_, n . and n_are cqual. and the
fourth index is only slightly different from the others. In
such cases, the off-diagonal contribution is at least two
orders of magnitude smaller than the diagonal terms.

Now consider the product H,(w)H¥(w). The diago-
nal terms have peaks at frequencies wher the real part of
the FRF goes to zero. Figure 7 shows some examples for
the case of light damping. At the FRF resonance frequen-
cies the major contribution to the modal sum comes from
only one mode. In the case of heavy damping the Q of these
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F1G. 7. An illustration of the diagonal frequency response function for a
lightly damped support plate.

resonances 1s greatly reduced; thus more than one mode
may contribute. Even so, the number of modes that need to
be retained is not large because only nearest neighbors con-
tribute at that frequency. For example, as seen in Fig 7, it
1s evident that to compute ®,,(w) at about 1.25 kHz one
needs only to retain modes that have indices clustered
about mode m =m,=n,=n,=12, Exclusion of the other
modes greatly reduces the computational complexity of
Eq. (33).

A representative  plot  of off-diagonal terms
H,(0)H*(w) is presented in Fig. 8. It is se=n that the
off-diagonal terms may have peaks at an FRF resonance
frequency, but the amplitudes of the off-diagonal terms are
still at least an order of magnitude smaller than the diag-
onal terms.

1X. NUMERICAL PROCEDURES

Because the largest values of the product
H, () H*(w) occur at the resonances of the FRF, an up-
per bound on Q(w) can be found by evaluating Eq. (35) at
those frequencies alone. Only a few modes about each res-
onance need to be retained in the summation. Additionally,
the off-diagonal contributions of each term in Eq. (35) are
at least two orders of magnitude less than the diagonal
terms. Therefore, the product

diagonat i

.00001 L 4 L

FREQUENCY (kHz)

FIG. 8. An illustration of off-diagonal frequency response function for a
lightly damped support plate.
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FIG. 9. The flexural noise spectral density as a funcuon of frequency for
the illustrative applicanion discussed 1 the text. Results for two types of
matenals and loss factors are shown. The loss factors pertain to the
Young's and shear modul of the SSP.

H,,,(w)H‘,‘,‘(w)Q)pm(w)Jf a,dxdy

is at least six orders of magnitude less for ms=n than for
m=n. Therefore, no off-diagonal terms need to be re-
tained.

The following procedur was used to evaluate Eq.
(33). First, the resonances of the FRF in the frequency
range of interest were determined. For the cases studied
there are about 20 such resonances. Then, ®,,(w) was
computed for each of these resonant frequencies by sum-
ming 100 of the nearest neighbor diagonal terms.

X. AN ILLUSTRATIVE EXAMPLE

As indicated previously, the spectral density ®,,(w)
represents the equivalent-plane-wave pressure sensed by
the array. In this form Q(w) can be directly compared to
ambient sea noise. Three specific cases have been studied
numericaily. All three cases are dual layer laminations con-
sisting of an SSP and an elastomer overlayer of thickness of
0.051 m (the OD). The array consisted of 28 x 14 pi-
ezorubber sensors. The sensor dimensions were 0.095
% 0.095<0.0032 m. The SSP dimensions were L =2.000
m, Ly=2.30 m, thickness=0.0254 m. The values of the
empirical constants a,, a,, a, , and ¥, that enter Eq. (55)
are a matter of some controversy in the literature. For our
example, we shall use the values suggested by Ko and
Schloemer,'” Eq. (9). Thus we take,

a,=0.09, a,=0766, y=0.389.

The friction velocity ¥ has also been evaluated using the
following relationships suggested by Ko and Schloemer;

V*-_— \'C/‘/ZU, (67)
where U is the platform speed, and c,. the friction coeffi-
cient, is related to the Reynolds number R, as,

c;=0.455(log R,) . (68)

Figure 9 shows the results for a 0.0254 m SSP made of
either steel or glass fiber. The platform speed is 20 kn. Two
values of loss tangent were used for the glass fiber SSP to

a,=Ta,, (66)
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show the influence of damping. The smaller value is more
representative of practical materials.

XI. CONCLUSION

The model presented above accounts for a heretofore
neglected flexural no.se mechanism; i.e., direct coupling of
the flexure with the lateral displacement of a planar sensor.
The model was developed for piezoelectric sensors such as
rubber-lead titanate composites and PVDF; however, the
development could be adapted to other sensor types such
as fiber optic sensors.

An exact analytical expression for the spectral density
of flexural noise was derived for the case where the random
excitation field is characterized by the modified Corcos
model. In general, this expression involves four summa-
tions, each to infinity, over the normal modes of the plate.
However, it was shown that only a few modes need to be
included for each frequency of interest. Therefore, the
equation for the spectral density is tractable for practical
applications.

The results indicate that a 0.0254-m steel SSP of light
damping and a 0.191-m glass fiber SSP of heavy damping
will both perform satisfactorily. However, the result for the
glass fiber SSP with light damping is comparable to direct
flow noise levels. It is also seen that flexural noise increases
inversely with frequency at about the same rate as sea
noise. Therefore, flexural noise arising from TBL excita-
tions could be important at lower frequencies.

The model, as applied to the example, did not account
for the mechanical properties of the sensor nor for the
effects of the inner decoupler. The added stiffness, mass,
and damping contributed by the sensor and the ID will
lower ‘e predicted noise levels. Therefore, the results rep-
resent upper limits on flexural noise for the various types of
SSPs. Inclusion of the sensor in the analysis is a straight-
forward process. However, to include the ID, more analyt-
ical development will be required.

The dependence of the spectral density on the array
design parameters can be inferred from Egs. (35), (49),
ai.  52) without actually performing numerical computa-
tions. To minimize flexural noise one should do the follow-
ng,

(i) Minimize d, the distance from the midplane of the
SSP to the midplane of the sensor.

(ii) Maximize g,/h,; and g,/h,;, the ratios of the hy-
drostatic sensitivity to the lateral sensitivities.

(iit) Maximize the number of sensors in the array and
the lateral dimensions of the SSP.

(iv) Minimize the gap between sensors. We see from
Eq. (52) that if the gaps were closed in at least one dimen-
sion, then there would be essentially no noise due to flexure
of the sensors. However, there still would be noise radiated
into the water by the edges of the SSP.

(v) Locate the neutral axis of the flexure at the mid-
plane of the sensor. For example, the piezorubber or
PVDF type sensors could be mounted on both sides of the
SSP. Then, their flexural responses would cancel. How-
ever, such a configuration would permit higher levels of
other noise sources.
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The limiting assumptions of the model could be ad-
dressed without modifying the basic approach. For exam-
ple, the condition of a pressure-release backing to the sup-
port plate could be replaced by a specific impedance
boundary condition which might represent an inner decou-
pler placed between the support plate and the hull of the
ship. Another limiting assumption is that the structure be-
haves as a thin plate. This assumption manifests itself in
the model via the relationships between lateral strains and
the normal displacement Eq. (2). This limitation may be
removed by replacing Eq. (2) with a more exact expression
obtained from thick plate theory.

In conclusion, an analytical approach and a mathe-
matical model has been developed for the case of TBL
noise induced via the coupling of the lateral sensitivity of
an extended sensor to the flexural vibration of the support
plate. This model provides a means for computing the
noise spectral density in terms of the equivalent-plane-
wave pressure, and thus provides a direct comparison with
ambient sea state noise levels.
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